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A B S T R A C T

Alzheimer’s disease is a complex neurodegenerative disease. Subjects with Mild Cognitive Impairment will
progress to Alzheimer’s disease, thus how to effectively diagnose Alzheimer’s disease or Mild Cognitive
Impairment using the clinical tabular data and Magnetic Resonance Images of the brain together has been
a major concern of researches. Deep multi-modal learning-based methods can improve Alzheimer’s disease
diagnostic accuracy compared to the single modality-based methods. However, most existing multi-modal
fusion methods only focus on learning global features fusion from image and clinical tabular data by
concatenation, lacking the ability to jointly analyze and integrate global–local information of image with
clinical tabular data. To address these limitations, this paper explored a novel Multi-Modal Global–Local Fusion
method to perform multi-modal Alzheimer’s disease classification through 3D Magnetic Resonance Images and
clinical tabular data. Specifically, we adopt a global module that uses concatenation to fuse features to learn
the global information. Moreover, we design an attention-based local module which encourages clinical tabular
features to guide the learning of local 3D Magnetic Resonance Images information, thus, enhancing the power
of features fusion from each modality. Our method considers both global and local information of the two
modalities for multi-modal fusion. Experiment results show that our method in this paper is highly effective in
combining 3D Magnetic Resonance Images and clinical tabular data for Alzheimer’s disease classification with
accuracy of 86.34% and 86.77% in ADNI and OASIS-1 datasets respectively, which outperforms the current
state-of-the-art methods. Detailed ablation experiments are conducted to highlight the contribution of various
components. code is available at: https://github.com/nananana0701/MMGLF.
1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease
with an insidious onset. Clinically, it is characterized by comprehensive
dementia such as memory disorder, aphasia, agnosia, impairment of
visuospatial skills, executive dysfunction, and personality and behav-
ioral changes [1]. AD is one of the most growing health issue, which
devastated many lives and will become a global burden in the coming
decades. The number of people with Alzheimer’s disease is approx-
imately 50 million around the world in 2015 with more than half
of them being early cases and is predicted to triple to 152 million
by 2050 [1–3]. However, the basic understanding of the causes and
mechanisms of AD are yet to be explored. Due to the rapid increase in
the prevalence of AD, the accurate diagnosis of AD and its early stage,
known as mild cognitive impairment (MCI), becomes very crucial for
the timely treatment and possible delay of AD. In the past, the diagnosis
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of AD mainly relied on the evaluation of the individual’s clinical tabular
data, including patient medical history, clinical observation or cogni-
tive evaluation [3]. Individual variables in tabular data capture rich
clinical knowledge and thus high-quality clinical tabular data makes
the diagnosis of AD more accurate, which can delay and control the
further conversion of MCI into AD.

Recent studies have shown that Magnetic Resonance Imaging (MRI)
is also used to detect the brain morphometric patterns for identifying
disease-specific imaging biomarkers [4]. Numerous methods are intro-
duced exploiting MRI data for distinguishing Alzheimer’s Disease (AD),
and its prodromal dementia stage, Mild Cognitive Impairment (MCI),
from normal controls (CN) [5,6]. Leveraging the recent success of com-
puter vision, deep convolutional neural networks (CNNs) have become
the key technology for classification of Alzheimer’s disease (AD) from
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MRI of the brain. CNNs excel at extracting high-level information from
MRI compared with manually extracted features [7–9]. However, brain
MRI only offers a partial view on the underlying changes causing
cognitive decline and studies that focus solely on the clinical tabular
data neglect the brain MRI that also causes cognitive decline.

Therefore, clinicians and researches begin to use MRI and clinical
tabular data together to classify Alzheimer’s disease. The key idea of
these methods is to learn the complementary fusion information from
each modality to improve the classification performance. A typical way
of learning fusion information is concatenating the feature vectors from
different modalities. Each modality’s feature vector provides informa-
tion about different aspects of an object. However, clinicians always
analyze global architecture changes and local distortions of a patient’s
3D MRI with clinical tabular data together in an integrated manner
for AD diagnosis. These existing fusion methods mainly focus on con-
catenated features by a global network using the whole image and
clinical tabular data, which realize the global information fusion while
ignoring the local information fusion between the two input modalities.
Local information fusion can be leveraged to increase the confidence
of the learned features for both modalities by encouraging the local
information fusion of the feature vectors from two modalities. The local
information is represented in multiple aspects, such as hippocampal
morphosis and other potential shared characteristics between the two
modalities; they are all critical for disease classification.

In this paper, we build a novel classification method, named global–
local multi-modal fusion with attention mechanism, to learn the dis-
criminative feature representations from 3D MRI and clinical tabular
data. The flow chart of our method is shown in Fig. 1. We design a
model in which a CNN’s capacity can realize a global–local exchange
of information from a patient’s 3D MRI information and clinical tabular
data instead of a typical concatenation of multiple data sources. This
is achieved by a global module to concatenate the global features
of each modality to obtain the global representation. Moreover, we
propose a new local module to produce a representation by adopting
attention-based fusion strategy to realize the clinical tabular features
exchange with the local-information of 3D MRI feature maps. Lastly, we
concatenate the global and local feature vectors of the two modalities to
obtain more discriminative representations and feed them to a classifier
for the final classification. In experiments on AD diagnosis, we show
that our multi-modal global–local method leads to a superior predictive
performance than using 3D MRI or clinical tabular data alone, and
outperforms the state-of-the-art methods.

To summarize, the key contributions of the proposed multi-modal
global–local framework for Alzheimer’s disease classification are:

(1) a novel multi-modal fusion method is proposed to perform
Alzheimer’s disease Classification using 3D MRI and clinical
tabular data. Its effectiveness is verified on a widely-used
Alzheimer’s disease Classification datasets, i.e., ADNI database;

(2) by adopting an attention-based mechanism strategy, our method
can learn the local fusion information between the two modal-
ities. More specifically, a modality discriminator is designed
to guide the feature extractor to learn the local information
explicitly;

(3) unlike most existing methods that only consider the global fusion
information, our method considers the fusion between global–
local information of 3D MRI and clinical tabular data.

The rest of this paper is organized as follows. First, a review of
elated work is provided in Section 2. In Section 3, we present the
etails of the material and our proposed method. In Section 4, we
escribe the experimental setups and report the experimental results.
ection 5 offers Limitations and future work. Finally, Section 5 offers
2

he conclusion.
2. Related work

This section reviews some related disease classification approaches,
including single-modality and multi-modality Alzheimer’s disease clas-
sification [10–13]. We will highlight how the proposed method differs
from the existing methods.

2.1. Single-modality Alzheimer’s disease classification

Identifying risk factors from patients’ clinical tabular data is crucial
as it helps AD management strategies, resulting in an improvement in
the patients’ life. Various risk factors have been previously identified
in many studies, including patients’ medical history, genetic data and
cognitive evaluation and so on [14–16]. Researches attempted to pin-
point the risk factors with statistical tools in studies, such as logistic
regression analyses [17,18]. In addition to that, the measurement of
sensitive markers in the early stages of AD can help researches and
clinicians develop new treatments and test their effectiveness. Various
measurements such as structural atrophy, pathological amyloid depo-
sition, and metabolic changes have already been shown to be sensitive
to the diagnosis of AD and MCI [19]. Neuroimaging techniques [20–
22] provide great help for the discovery of AD-related brain regions
of interest (ROIs), which is a powerful instrument for classification
of AD. For example, voxel-based measures extracted from structural
MRI (VBM-MRI) and fluorodeoxyglucose positron emission tomogra-
phy (FDG-PET), have been shown to be useful for investigating the
neurophysiological features of AD and MCI [23–26].

In recent decades, machine learning and pattern recognition have
been used in MRI for AD and MCI classification. For example, the
researches extracted some features from certain ROI, such as the hip-
pocampus on structure MRI [27] for the classification of AD. As the
brain structure and clinical data related to AD are very complex,
acquiring data from single modality (such as MRI or clinical tabular
data alone) dose not provide enough sufficient feature information for
AD diagnosis. Thus, researches begin to use MRI and clinical tabular
data together for classification of AD. Numerous studies have shown
that multi-modal data can provide complementary information, and the
information fusion from different modalities can enhance classification
performance. Thus, the accuracy of using multi-modal data for AD
classification is better than that of single modality.

2.2. Multi-modality Alzheimer’s disease classification

Existing models for image and clinical tabular data integration for
disease classification can be divided into two categories [28]. The
first category to combine the image and clinical tabular data is to
directly concatenate tabular data and image features extracted using
a CNN [29–32]. The authors of [33] first extracted regions of interest
from brain MRI to obtain progression risk and then combined with
baseline clinical data to predict progression to AD. However, image
features are extracted independently of the clinical tabular data, which
means the clinical tabular data may be used as redundant information,
such as a patient’s age, instead of complementing it. Thus, in [34], a
single network is used to concatenate the clinical tabular data with
the latent image representation prior to the last fully connected (FC)
layer for survival prediction with histopathology images, genomic data,
demographics and in [29,32], time-to-dementia was predicted with
hippocampus shape and clinical markers. The disadvantage of this
approach is that tabular data only contributes to the final prediction
linearly. Based on this situation, a multi-layer perceptron (MLP) is used
after concatenation to achieve non-linear relationships between image
and tabular data. The authors of [31] concatenated digital pathology
images and genomic data as inputs to MLP for cancer outcomes pre-
diction, which is also used in [4,30] to learn from brain MRI and
clinical markers for AD diagnosis. In addition to that, the authors
of [35–37] firstly used a CNN and a MLP for the image data and
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Fig. 1. The schematic illustration of our proposed multi-modal network for Alzheimer’s classification based on 3D MRI and clinical tabular data.
tabular data respectively for feature extraction, and then concatenated
extracted features to a MLP to achieve fusion for disease prediction.
However, although using straightforward concatenation to exploit com-
plementary modalities sometimes makes sense, it suffers from a major
pitfall: straightforward concatenation means that multiple features are
treated equally, which makes the complementary modalities have only
minimal interaction and become incapable of being effectively uti-
lized. In addition to that, concatenation based methods only integrate
global information of each modality result in ignoring local information
fusion of two modalities, so they cannot support local fine-grained
interactions, which can lead to sub-optimal solutions.

The second type of methods are inspired by the mapping between
language expressions and images [38–41]. For instance, the authors
of [42] research the diagnosis of Alzheimer’s disease. They construct
an auxiliary neural network called DAFT, which dynamically incites or
represses each feature map of a convolutional layer by utilizing tabular
information that is complementary to the image information condi-
tional on both image and tabular data. However, the DAFT network
combined tabular data without encoding, which resulted the redundant
information in tabular data cannot be removed and finally cause poor
network performance. Meanwhile, this network uses the clinical tabular
data to incite or repress each global image feature maps of a convolu-
tional layer without exploring the local fine-grained fusion, which lead
to performance degradation of fusion. Duanmu et al. [43] achieved
the fusion model by channel-wise multiplication of the intermediate
results of imaging and non-imaging clinical data branches for predicting
response to chemotherapy. They use an auxiliary network that takes
the tabular data and outputs a scalar weight for each feature map
of every convolutional layer of their CNN. Thus, a patient’s tabular
data can amplify or repress the contribution of image-derived latent
representations at multiple levels. The downside of this approach is
that the number of weights in the auxiliary network scales quadratically
with the depth of the CNN, which quickly becomes impracticable.

Above multi-modal fusion frameworks, most of them only focus
on learning and using global information while the lack of global–
local analysis may lead to sub-optimal performance. In our method,
we consider both of global and local fusion strategy to learn high-level
associations between 3D MRI and clinical tabular data and integrate
them for the AD classification.

3. Material and method

3.1. Material

ADNI datasets. The data we used in this paper is collected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://
3

Table 1
The detailed attributes of ADNI and OASIS-1 datasets.

Datasets Diagnosis Subjects Age Male

ADNI(1/2/3GO)
AD 20.9% 74.7 ± 7.9 58.1%
MCI 28.6% 74.9 ± 7.5 69.4%
CN 50.5% 74.3 ± 7.9 49.6%

OASIS-1 Dementia 24.0% 78.9 ± 11.1 41.0%
Non Dementia 76.0% 54.2 ± 26.2 37.7%

adni.loni.usc.edu/). The ADNI project was launched in 2003 by the Na-
tional Institute on Aging, the National Institute of Biomedical Imaging
and Bioengineering, the Food and Drug Administration, private phar-
maceutical companies, and nonprofit organizations with a 60 million,
5-year public–private partnership. The main purpose of this project is
to verify whether brain MRI, other biomarkers, and neuropsychological
assessments can be combined to measure the progression of AD and its
early stage, MCI. In the current study, we included 1721 participants
(Table 1) from the ADNI database. The datasets include all subjects
from ADNI-1, ADNI-2, ADNI-3 and ADNI-GO, who had baseline MRI
modality. We included three groups of participants: cognitively normal
persons (CN), patients with Alzheimer’s Disease (AD), and patients
with mild cognitive impairment (MCI). Each participant contains MRI
modality and metadata. Besides, AD is a form of dementia characterized
by extracellular 𝛽-amyloid peptide plaque deposits and abnormal tau
accumulation and phosphorylation which ultimately lead to neuronal
and synaptic loss [44]. Thus, the clinical tabular data we used in this
paper comprises 7 variables: age, sex, years in education, APoe4, cere-
brospline fluid biomarkers A𝛽, P-tau181, T-tau. There are 5 numerical
and 2 categorical variables.

OASIS-1 datasets. The data can be obtained from the Open Access
Series of Imaging Studies (www.oasis-brains.org), which is a project
aimed at making magnetic resonance imaging (MRI) data sets of the
brain freely available to the scientific community for Alzheimer’s Dis-
ease. It is composed of 416 sample datasets (Table 1) divided into four
subjects, which not only uses the brain MRI data (T1-weighted mag-
netic resonance imaging scans) from the original sagittal perspective
as a modal data, but also preprocesses the text attribute information
of each sample into another modal data. The text attribute information
we used comprise 7 variables: sex, age, years in education, SES, MMSE,
CDR, ASF, which are all related to Alzheimer’s Disease. We included
two groups of participants: Non Demented, and patients with Dementia.

3.2. Data preprocessing

Data preprocessing is the most essential step before applying feature
extraction and fusion. It is not possible to utilize collected data directly

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.oasis-brains.org
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in the classification task, as it tends to be noisy, incomplete, and incon-
sistent. Therefore, a preprocessing step is applied to represent the data
effectively for Alzheimer’s disease classification. Data preprocessing
includes missing data filtering, normalization and one-hot encoding of
clinical tabular data and normalization of 3D MRI.

3.2.1. Missing data filtering of clinical tabular data
Since the datasets we used are an amalgamation of data from

multiple related studies, most features are sparsely populated. Where
measurements are missing, values are reconstructed using mean values
from existing data which belongs to the same disease classification by
using following equation:

𝑋 = 1
𝑛
∑

𝑋𝑖. (1)

here 𝑋𝑖 represents the 𝑖th pattern of feature X within categories; 𝑋
represents the mean of feature X under categories. In this work, 𝑋
replaces the missing values of feature X within categories.

3.2.2. Normalization and one-hot encoding
We normalize images following the minimal pre-processing pipeline

in [6]. All the input 3D MRI are resized to 64X64X64.
Clinical tabular data, such as ADNI datasets, contains a number of

features, and we used in this paper includes 5 numerical and 2 cate-
gorical variables. Every numerical variable includes different numerical
values, which increases the difficulties during the computation process.
Therefore, a normalization technique is used to normalize numerical
variable in the range between 0 and 1, as well as to decrease the
numerical complexity during the computational process of Alzheimer’s
disease diagnosis. In this paper, the well-known min–max normaliza-
tion method is used. The process of normalization is realized by using
the following equation:

𝑋𝑛𝑜𝑟𝑚 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
× [𝑛𝑒𝑤_𝑚𝑎𝑥 − 𝑛𝑒𝑤_𝑚𝑖𝑛] + 𝑛𝑒𝑤_𝑚𝑖𝑛. (2)

here, 𝑋𝑛𝑜𝑟𝑚, X, 𝑋𝑚𝑖𝑛, and 𝑋𝑚𝑎𝑥 are the normalized data value, the
original data value, the minimum data value, and the maximum data
value, respectively, in the entire datasets, while new_max and new_min
indicate the range of the converted datasets. We use new_max = 1 and
new_min = 0. Using this method, all the features’ values lie within the
interval [0, 1].

The categorical variables (eg, sex, APoe4) are presented by one-hot
encoding, resulting in 6 binary features.

3.3. Framework of global–local multi-modal fusion with attention mecha-
nism

The framework of our proposed is shown in Fig. 1, from which we
can see that model contains two input branches: the 3D MRI branch and
the clinical tabular data branch. When the 3D MRI and clinical tabular
data are input into model, they will go through a ResNet [45] and a
text encoder (a 1D convolution, batch normalization and sigmoid linear
unit (SiLU)) for extracting 3D MRI features and clinical tabular features
respectively. We obtain the feature maps within the last residual block
as the extracted image representations and the last layer features of
the text encoder as the extracted clinical tabular representations. Then
our method will input the extracted representations into three modules:
a global fusion module, a local attention-based fusion module, and a
classification module.

These three modules and the feature extractor are trained jointly in
an end-to-end manner to guide the feature extractor in learning both
global and local fusion features. We will illustrate the details below.

Let 𝐷𝑠 = ((𝑥𝐼 , 𝑥𝑇 , 𝑌 )𝑖)𝑁𝑖=1 be the set of ADNI evaluation datasets,
where 𝑥𝐼 ∈ R𝑤×ℎ×𝑑×1 and 𝑥𝐼 ∈ R𝑝×1 denote the 𝑖th 3D MRI and clinical
tabular data respectively. w, h and d are the width, height and depth
4

of the input 3D MRI with 1-channel. p denotes the number of tabular
data features. 𝑌𝑖 = {0, 1, 2} denotes the label for Alzheimer’s disease
classification task (0 = AD, 1 = CN, 2 = MCI). Lastly, 𝑁 is the total
number of subjects. The goal of our proposed method is to train the
neural network as a function to map input 3D MRI and clinical tabular
data from input space to its label space, where we need to obtain the
trainable parameters of the neural network model.

3.3.1. Global multi-modal fusion
As mentioned above, clinicians always use global (e.g., architecture

change of the whole brain area) and local information (e.g., hippocam-
pal morphosis) of 3D MRI and clinical tabular data together to analyze
Alzheimer’s disease. To emulate the multi-modal global analysis of
two modalities, our global fusion module is trained to achieve two
objectives: (1) the global representations of two modalities should be
similar to each other, and (2) the complementarity of both modalities
has to be effectively characterized.

The global feature representations fusion of two modalities is im-
plemented by the global fusion block, as shown in Fig. 2. We first
transform the 3D MRI feature maps 𝐼 ∈ R𝐶×𝐷×𝐻×𝑊 into feature vectors
𝐼𝑔 ∈ R𝐶 by global max pooling and clinical tabular features 𝑇 ∈ R𝐶×𝑃

by text encoder. Where H, W and D are the spatial height, weight and
depth, with C being channels and P being dimension of clinical tabular
features.

To penalize differences between the two global representations, we
define the mapping functions 𝐼𝐼 = 𝑓𝑇−𝐼 (𝑇 ) that can learn a projection
f from the clinical tabular representations to 3D MRI representations,
and then we obtain the global feature representations by 𝑈𝑔𝑙𝑜𝑏𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 =
[𝐼𝑔 , 𝐼𝐼 ], which characterize the complementary of both two inputs.
Here, [⋅, ⋅] represents the concatenation operation. Next, the global
usion feature representations 𝑈𝑔𝑙𝑜𝑏𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛combined two modalities
eatures will join the next stage.

.3.2. Attention mechanism-based local fusion
The local attention module aims to build feature vectors from the

wo inputs by analyzing interactions between samples from 3D MRI and
linical tabular data. We devise a local-aware fusion module to generate
he 3D MRI embedding features with the guidance of the clinical
abular information, thus the output carries the information from each
odality. Inspired by the recent application of attention mechanism in
eep neural networks [9,46], we use the attention mechanism based
usion method to achieve fine-grained fusion of multi-modal features
o learn the disease features. The benefit of our strategy is that we
an use clinical tabular information to calculate weights represent the
mportance of each feature for 3D MRI. An overall representation of the
nput is then computed with the weights as a weighted combination of
ll the input 3D MRI features. Attention weights with greater values
re higher priorities in determining the corresponding significant input
D MRI features. Our proposed method comprises the attention module
hat generates local fusion features from clinical tabular features guided
D MRI features for AD diagnosis classification task.

The schematic diagram of the local fusion operation is shown in
ig. 2. For a brief and detailed description, we introduce the fea-
ure map 𝐼 ∈ R𝐻×𝑊 ×𝐷×𝐶 along the channels, which we consider
mportant for local fine-grained fusion. Starting from the 3D MRI
ackbone features I, we transform I into the main local feature matrix
𝑙𝑜𝑐𝑎𝑙 = [𝑓 1,1,1, 𝑓 1,2,1,… , 𝑓 𝑖,𝑗,𝑘,… , 𝑓𝐻×𝑊 ×𝐷], where 𝑓 𝑖,𝑗,𝑘 ∈ R1×1×1×𝐶

corresponding to the spatial location (i, j, k) with 𝑖 ∈ {1, 2,… ,𝐻},
∈ {1, 2,… ,𝑊 } and 𝑖 ∈ {1, 2,… , 𝐷}. The clinical tabular features 𝑇 ∈

R𝐶×𝑃 . To estimate fusion of the local 3D MRI information with clinical
tabular features, let 𝑓 𝑖,𝑗,𝑘

𝑚 to be the 𝑚𝑡ℎ features of 𝐼𝑙𝑜𝑐𝑎𝑙, we apply the
attention-based weighted fusion method to the representations:

𝑄𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 =
𝑛
∑

𝑘=1
𝑎𝑘𝑓

𝑖,𝑗,𝑘
𝑚 . (3)

𝑎𝑘 =
𝑒𝑥𝑝((𝑇𝑊𝑞) ⋅ (𝑓

𝑖,𝑗,𝑘
𝑚 ))

∑𝐾 𝑖,𝑗,𝑘 . (4)

𝑘=1 𝑒𝑥𝑝(𝑇 ⋅ 𝑓𝑚 )
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Fig. 2. The diagram of the fusion block.
where 𝑊𝑞 , 𝑊 𝑇
𝑘 are the linear layers. The local fusion features for two

modalities are obtained as 𝑄𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛. Each 𝑄𝑖,𝑗,𝑘 represents the depth
fusion feature representation which contains feature information on the
spatial position (i, j, k) of all channels C in 3D MRI feature maps and
the clinical tabular features. After this operation, each feature maps
carry clinical tabular information and 3D MRI information, and the
two modalities realize complement each other. Then the fused local
features 𝑄𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 are passed through the fusion block’s subsequent
convolutional layer to obtain the final local fusion feature represen-
tations 𝑄𝐹

𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛. the local features for each modality is obtained
with 𝑄𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐺𝐴𝑃 (𝑄𝐹

𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛), GAP represents the global av-
erage pooling. Finally, the integration of the global and local module
features is obtained via a concatenation fusion, where we concatenate
𝑈𝑔𝑙𝑜𝑏𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 and 𝑈𝑙𝑜𝑐𝑎𝑙−𝑓𝑢𝑠𝑖𝑜𝑛 before applying the last MLP classification
layer.

3.4. Classification module

The classification module is utilized to classify the multi-modal
input feature maps into their corresponding categories. Firstly, this
module concatenates the global features and local features from both
3D MRI and clinical tabular data to obtain global–local fusion feature.
Then the concatenated feature vectors will go through a network of two
layers. The first layer is a fully-connected layer, which is followed by
the softmax layer that is used to classify the inputs into three disease
categories.

In our method, we evaluate the multi-modal method on the task
of diagnosing subjects as cognitively normal (CN), mild cognitive im-
paired (MCI), or demented (AD). We formulate the diagnosis task as a
classification problem. The loss function of the classification module is
the cross-entropy loss:

𝐿𝑙𝑜𝑔(𝑦, �̂�) = −(𝑦𝑙𝑜𝑔(�̂�) + (1 − 𝑦)𝑙𝑜𝑔(1 − �̂�)). (5)

where 𝑦 is the ground truth label for task and �̂� is the predict label for
task.

3.5. Exploration of critical brain regions for classification with Class Acti-
vation Mapping (CAM)

CAM technique can provide which parts of the medical image affect
the classification decisions made by methods for tasks. In [47], the
authors have given the images obtained using the gradient-weighted
5

class activation mapping (Grad-CAM) technique to inspect the network
predictions for the COVID-19 detection task. Thus, we use class activa-
tion maps (CAM) to demonstrate our model’s effectiveness visually to
indicate the brain regions relevant for AD classification. In visualizing
the activation for the network’s decision, we explored class activa-
tion mapping (CAM), a technique that incorporates a global average
pooling (GAP) layer succeeding the last convolutional layer in any
image classification task. We visualize the activations to interpret our
proposed model’s robustness and performance without treating it as
a black-box. This technique provides remarkable localization perfor-
mance on discriminative features in the images by generating heat
maps to buttress the network’s performance. Specifically, we applied
the CAM to highlight the parts of the brain that are discriminative for
AD classification. The CAM technique is extended to a 3D architecture
to produce the activations in the AD prediction task. The class activa-
tion map harnesses the activations produced by the last convolutional
layers in visualizing the discriminative features. The method projects
the class weights of the output layer onto the activation maps in the
last convolutional layer. Furthermore, a weighted sum of the features in
the last convolutional layer generates the activations. In implementing
the 3D CAM for this work, we modified the last block by replacing the
max-pooling layer with the global average layer to have the desired
architecture in generating a class activation map [48].

4. Experiments study

4.1. Experimental settings

4.1.1. Training and test details
Our proposed network was implemented with PyTorch and trained

on an Intel® CoreTM i5-4460 Processor paired with a NAVIDIA
GEFORCE GTX 3060 GPU. During training process, our network is
trained using the Adam optimizer, with an initial learning rate of
0.0023 to optimize the entire neural network, batch size of 8 and
epochs of 30. In addition, We utilized the five-fold cross-validation,
and divided all data into five folds at the subject level. In each training
session, one fold was used for testing and the remaining four folds were
used for training.
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Table 2
Ablation results of global fusion module in terms of accuracy (%). Note that ‘±std’ represents the empirical standard deviation across the 5 folds. The best-found scores are indicated
in bold.

M LFM only Add Multiply GFM AD CN MCI Avg. Ttrain Ttest

I ✓ 85.26 ± 0.55 85.77 ± 0.46 83.56 ± 0.49 84.86 ± 0.49 10.3 h 9.9 ms
II ✓ ✓ 85.56 ± 0.51 86.33 ± 0.36 83.73 ± 0.24 85.19 ± 0.37 10.4 h 10.3 ms
III ✓ ✓ 85.56 ± 0.48 86.88 ± 0.73 82.44 ± 0.64 84.96 ± 0.62 10.4 h 10.3 ms
Ours ✓ ✓ 86.84 ± 0.49 87.69 ± 0.57 84.22 ± 0.57 86.34 ± 0.54 10.4 h 11.3 ms

Note that 201800B1std2019 represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.
Table 3
The detailed ablation results of global fusion module in terms of Specificity (Spec.), precision (Prec.), AUC and F1-score(%). Note that ‘±std’
represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.

Method Met. AD CN MCI Avg.

I Spec. 95.68 ± 0.69 93.51 ± 0.50 88.86 ± 0.60 92.68 ± 0.60
Prec. 85.79 ± 0.64 91.41 ± 0.35 76.56 ± 0.60 84.58 ± 0.53
AUC 92.12 ± 0.29 96.24 ± 0.40 93.57 ± 0.36 93.98 ± 0.35
F1-score 79.66 ± 0.55 90.38 ± 0.38 82.78 ± 0.24 84.27 ± 0.39

II Spec. 95.91 ± 0.60 96.66 ± 0.42 84.54 ± 0.38 92.37 ± 0.47
Prec. 81.79 ± 0.43 92.64 ± 0.38 74.62 ± 0.39 83.02 ± 0.40
AUC 95.24 ± 0.42 96.71 ± 0.47 84.76 ± 0.57 92.23 ± 0.49
F1-score 78.76 ± 0.61 89.82 ± 0.86 81.22 ± 0.38 83.27 ± 0.62

III Spec. 97.08 ± 0.32 91.42 ± 0.42 89.34 ± 0.48 92.61 ± 0.41
Prec. 89.95 ± 0.47 90.15 ± 0.42 76.02 ± 0.62 85.37 ± 0.50
AUC 94.44 ± 0.36 96.82 ± 0.72 86.77 ± 0.68 92.68 ± 0.59
F1-score 82.16 ± 0.60 89.76 ± 0.86 81.17 ± 0.57 84.36 ± 0.68

Ours Spec. 97.56 ± 0.57 93.38 ± 0.38 88.86 ± 0.56 93.27 ± 0.50
Prec. 91.59 ± 0.59 91.37 ± 0.55 78.74 ± 0.58 87.22 ± 0.57
AUC 94.63 ± 0.58 96.87 ± 0.62 86.95 ± 0.47 92.82 ± 0.56
F1-score 81.35 ± 0.42 91.36 ± 0.38 83.13 ± 0.58 85.44 ± 0.46

Note that 201800B1std2019 represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.
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4.1.2. Evaluation metrics
We use accuracy (Acc.), F1 score, specificity (Spec.), precision

(Prec.) and the area under the receiver operator characteristic curve
(AUC) as our evaluation criteria metrics. F1 score = 2 × precision

recall / (precision + recall). The definitions of accuracy, F1 score,
pecificity, and precision are as follows:

𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 ,

𝑆𝑝𝑒𝑐 = 𝑇𝑁
𝐹𝑃+𝑇𝑁 ,

𝑃 𝑟𝑒𝑐 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)

here TP, FP, TN, and FN are the numbers of the true positive, false
ositive, true negative, and false negative samples, respectively. recall

TP/(FP+FN). For all these metrics, the larger values indicate the
etter performance.

.2. Experimental results and analysis

.2.1. Ablation study
To better understand the contributions of each module in our pro-

osed method and which settings can best integrate clinical tabular
ata, we perform an ablation study to demonstrate the effectiveness
f the global fusion module, the local fusion module, the text encoder
odule, and which the location of fusion block within the last residual

lock can get better performance.
1. Effectiveness of the global fusion module.
To evaluate the effectiveness of the global fusion module, we com-

ared the performance of different global fusion methods. In model
, model II, and model III, we conducted experiments without global
usion module, add and multiply global feature representations of
wo modalities, respectively. Specifically, in Model I, only local fusion
odule is utilized to fuse multi-modal feature representations. In Model

I, local fusion module and global fusion module that added the global
epresentations of two modalities are utilized for AD classification. In
6

t

odel III, local fusion module and global fusion module that multi-
lied the global representations of two modalities are utilized for AD
lassification.

The performance of these models is shown in Tables 2 and 3,
‘Avg’’. denotes the average score over the entire row. The performance
f Model I is obviously worse than others, demonstrating that using
nly local fusion module to fuse multi-modal feature representations
annot obtain the best performance for AD classification. This is not
urprising, since there is need in classifying AD using global fusion
eature representations. Model II performs better than Model III, due
o the fused feature representations are also zeros when the feature
epresentations of a modality exists zero values using multiply for
lobal feature fusion. Besides, the proposed method further improves
odel I on most metrics (4 out of 5), verifying the effectiveness of using

oncatenation for global fusion and the effectiveness of using global and
ocal fusion module together for AD classification.

2. Effectiveness of the local fusion module and text encoder module.
To validate the effectiveness of local fusion module, we discard local

usion module and perform global fusion module only for multi-modal
usion, as implemented by Model 1. Besides, we also compare our pro-
osed local fusion module against a self-attention (SA) module, which
ntegrates features of two modalities and performs the self-attention
echanism, as implemented by Model 2. Meanwhile, we conducted

n ablation study to evaluate the effectiveness of text encoder module,
s implemented in Model 3. In Model 3, the clinical tabular data is
used with features of 3D MRI without encoding. The performance of
hese models is shown in Tables 4 and 5. It reveals that the proposed
ethod outperforms Model 1 with a significant AUC improvement of
.54%, demonstrating that local fusion module for multi-modal fusion
s helpful for AD classification. Moreover, comparing to Model 2, our
roposed method achieved better performance on metrics (4 out of
), which means the effectiveness of our proposed local fusion module
ased on attention. According to the results of Model 3, our proposed
ethod obtains the better performance when encodering the clinical

abular data via text encoder module. All of those demonstrate our
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Table 4
Ablation results of local fusion module and text encoder module in terms of accuracy (%). Note that ‘±std’ represents the empirical standard deviation across the 5 folds. The
best-found scores are indicated in bold.

M GFM only ASA LFM Text encoder AD CN MCI Avg. Ttrain Ttest

1 ✓ ✓ 85.35 ± 0.31 84.71 ± 0.60 83.12 ± 0.49 83.79 ± 0.47 9.7 h 9.5 ms
2 ✓ ✓ ✓ 85.34 ± 0.45 86.76 ± 0.46 82.48 ± 0.47 84.86 ± 0.47 10.1 h 9.8 ms
3 ✓ ✓ 83.44 ± 0.57 84.22 ± 0.36 82.87 ± 0.54 83.51 ± 0.49 10.3 h 10.1 ms
Ours ✓ ✓ ✓ 86.84 ± 0.49 87.69 ± 0.57 84.22 ± 0.57 86.34 ± 0.54 10.4 h 11.3 ms
Table 5
The detailed ablation results of proposed global fusion module in terms of Specificity (Spec.), precision (Prec.), AUC and F1-score(%). Note that
‘±std’ represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.
Method Met. AD CN MCI Avg.

1 Spec. 95.83 ± 0.47 91.94 ± 0.57 89.81 ± 0.53 92.53 ± 0.52
Prec. 87.22 ± 0.53 89.56 ± 0.36 77.36 ± 0.48 84.71 ± 0.46
AUC 94.36 ± 0.36 96.22 ± 0.44 74.34 ± 0.38 88.31 ± 0.39
F1-score 81.71 ± 0.44 90.08 ± 0.33 80.52 ± 0.44 84.10 ± 0.40

2 Spec. 95.66 ± 0.38 96.63 ± 0.37 82.82 ± 0.28 91.70 ± 0.34
Prec. 84.84 ± 0.55 94.31 ± 0.34 68.79 ± 0.48 82.64 ± 0.46
AUC 95.12 ± 0.33 96.32 ± 0.36 90.72 ± 0.29 94.05 ± 0.33
F1-score 76.69 ± 0.34 89.36 ± 0.42 77.91 ± 0.36 81.32 ± 0.37

3 Spec. 95.58 ± 0.38 93.84 ± 0.30 87.52 ± 0.38 92.31 ± 0.35
Prec. 84.39 ± 0.45 91.46 ± 0.38 75.96 ± 0.24 83.93 ± 0.36
AUC 93.38 ± 0.42 95.39 ± 0.24 93.32 ± 0.32 94.03 ± 0.33
F1-score 79.72 ± 0.45 88.48 ± 0.55 81.76 ± 0.46 83.32 ± 0.49

Ours Spec. 97.56 ± 0.57 93.38 ± 0.38 88.86 ± 0.56 93.27 ± 0.50
Prec. 91.59 ± 0.59 91.37 ± 0.55 78.74 ± 0.58 87.22 ± 0.57
AUC 94.63 ± 0.58 96.87 ± 0.62 86.95 ± 0.47 92.82 ± 0.56
F1-score 81.35 ± 0.42 91.36 ± 0.38 83.13 ± 0.58 85.44 ± 0.46
Table 6
Ablation results of different location in terms of accuracy (%). Note that ‘±std’ represents the empirical standard deviation
across the 5 folds. The best-found scores are indicated in bold.
Location AD CN MCI Avg. Ttrain Ttest

Location 1 83.88 ± 0.46 85.51 ± 0.32 83.12 ± 0.32 84.17 ± 0.37 10.7h 11.9 ms
Location 2 82.12 ± 0.29 83.63 ± 0.44 81.34 ± 0.38 82.36 ± 0.37 11.0h 12.9 ms
Location 3 83.13 ± 0.29 84.06 ± 0.21 82.34 ± 0.28 83.18 ± 0.28 10.5h 11.8 ms
Ours 86.84 ± 0.49 87.69 ± 0.57 84.22 ± 0.57 86.34 ± 0.54 10.4h 11.3 ms
proposed method achieves the best performance when utilizing both
local fusion module and text encoder module.

3. Location of fusion block within the last residual block.
To better understand under which the location of fusion block

within the last residual block can get better performance, we set the
fusion module as positions before last residual block (Location 1),
before the first convolutional layer (Location 2), before the second
convilutional layer (Location 3), and before the first ReLU (MMGLF).
The experimental results of different location in Tables 6 and 7 show
that the proposed method is relatively robust to the choice of location.
Moreover, when the fusion module block is located before the first
ReLU within the last residual block, the results were further increased
to the best performance.

4.2.2. Comparison with the state-of-the-art methods
To evaluate the performance of our proposed model in classifying

Alzheimer’s disease, we compared against existing methods on the
ADNI datasets. All the methods are evaluated with the same datasets.
The comparison methods include: (1) only using 3D MRI to classify
Alzheimer’s disease; (2) only using clinical tabular data to classify
Alzheimer’s disease; (3) the clinical tabular data is concatenated with
the latent image feature vectors and then the concatenated vectors are
fed directly to the final classification layer [29,32,34]; (4) the concate-
nated vector is fed to an FC bottleneck layer prior to the classification
layer [4,30]; (3) and (4) fuse the representations of different modalities
by concatenating the representations from different modalities at the
end of feature extractor. (5) a general-purpose module for CNNs was
proposed that dynamically rescales and shifts the feature maps of a
7

convolutional layer, conditional on a patient’s tabular clinical infor-
mation [42]; (6) the channel-wise multiplication of the intermediate
results of imaging and non-imaging data [43] was originally proposed
for prediction of breast cancer, which trained MRI data and non-
imaging clinical data with one informing the other at the intermediate
stages of the CNN (Interactive-model) and then multi-modal features
(original clinical tabular data and encoded image data) were multiplied
at three levels for final prediction.

Firstly, the results of the three classification tasks in terms of
accuracy are reported in Table 8. From Table 8, the average accu-
racy of different models indicate that our model is superior compared
with the uni-modal and other multi-modal fusion approaches, fol-
lowed by the second best [42] and the third best [43] multi-modal
networks. Combining two modalities can effectively improve model
performance according to the improved performance over uni-modal
analysis, which indicates the significance of multi-modal fusion. Ac-
cording to Table 8, the baseline model is ResNet using image and text
encoder using tabular data, which obtained the accuracy of 70.15%
and 72.52% respectively. The reason of text encoder using clinical
tabular data outperforms ResNet using 3D MRI is clinical tabular
data comprises amyloid-specific measures derived from cerebrospinal
fluid and PET images that are known to become abnormal before
changes in MRI are visible. All Concatenation networks are succeed
in extracting global complementary information, resulting in improved
performance compared with the uni-modal. However, these results
clearly demonstrate that the Concatenation networks fall behind com-
pared with other fusion frameworks in this paper. The main reason why
the concatenation-based fusion methods perform worse is that even
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Table 7
The detailed ablation results of different location in terms of Specificity (Spec.), precision (Prec.), AUC and F1-score(%). Note that ‘±std’
represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.
Method Met. AD CN MCI Avg.

Location 1 Spec. 97.42 ± 0.41 91.68 ± 0.55 87.46 ± 0.48 92.19 ± 0.48
Prec. 89.52 ± 0.35 90.45 ± 0.68 74.84 ± 0.44 84.94 ± 0.49
AUC 93.50 ± 0.40 96.12 ± 0.44 88.81 ± 0.58 92.81 ± 0.47
F1-score 78.73 ± 0.33 90.47 ± 0.38 80.71 ± 0.62 83.30 ± 0.44

Location 2 Spec. 95.24 ± 0.48 87.48 ± 0.41 90.62 ± 0.47 91.11 ± 0.45
Prec. 83.69 ± 0.43 85.76 ± 0.43 78.49 ± 0.50 82.62 ± 0.45
AUC 92.21 ± 0.37 95.32 ± 0.34 91.43 ± 0.36 92.99 ± 0.36
F1-score 79.52 ± 0.43 87.79 ± 0.50 78.94 ± 0.55 82.08 ± 0.49

Location 3 Spec. 95.52 ± 0.46 91.69 ± 0.36 88.42 ± 0.37 91.88 ± 0.40
Prec. 84.64 ± 0.44 89.51 ± 0.52 75.74 ± 0.41 83.30 ± 0.46
AUC 92.73 ± 0.48 95.76 ± 0.43 84.54 ± 0.57 91.01 ± 0.49
F1-score 78.59 ± 0.41 88.64 ± 0.29 80.83 ± 0.50 82.69 ± 0.40

Ours Spec. 97.56 ± 0.57 93.38 ± 0.38 88.86 ± 0.56 93.27 ± 0.50
Prec. 91.59 ± 0.59 91.37 ± 0.55 78.74 ± 0.58 87.22 ± 0.57
AUC 94.63 ± 0.58 96.87 ± 0.62 86.95 ± 0.47 92.82 ± 0.56
F1-score 81.35 ± 0.42 91.36 ± 0.38 83.13 ± 0.58 85.44 ± 0.46
Table 8
Comparison with the SOTA methods by accuracy (%). Note that ‘±std’ represents the empirical standard deviation across the 5 folds. The
best-found scores are indicated in bold.
Methods AD CN MCI Avg. Ttrain Ttest

Image only 70.64 ± 0.36 70.51 ± 0.42 69.31 ± 0.36 70.15 ± 0.38 8.2 h 7.3 ms
Tabular data only 72.34 ± 0.42 73.45 ± 0.44 71.76 ± 0.38 72.52 ± 0.41 0.08 h 0.5 ms
Concat-1 [29] 73.86 ± 0.36 74.62 ± 0.41 69.63 ± 0.48 72.70 ± 0.42 9.2 h 8.9 ms
Concat-2 [30] 81.52 ± 0.46 84.88 ± 0.44 79.25 ± 0.48 81.88 ± 0.46 9.5 h 9.1 ms
DAFT [42] 83.88 ± 0.50 87.49 ± 0.47 82.46 ± 0.40 84.61 ± 0.46 11.2 h 13.5 ms
Inter [43] 82.89 ± 0.53 85.52 ± 0.46 80.49 ± 0.29 82.97 ± 0.43 10.9 h 12.7 ms
Ours 86.84 ± 0.49 87.69 ± 0.57 84.22 ± 0.57 86.34 ± 0.54 10.4 h 11.3 ms
Table 9
The detailed ablation results of different location in terms of Specificity (Spec.), precision (Prec.), AUC and F1-score(%). Note that ‘±std’
represents the empirical standard deviation across the 5 folds. The best-found scores are indicated in bold.
Method Met. AD CN MCI Avg.

Image only Spec. 70.88 ± 0.56 71.26 ± 0.51 70.67 ± 0.34 70.94 ± 0.47
Prec. 70.22 ± 0.51 71.84 ± 0.51 63.46 ± 0.29 68.51 ± 0.44
AUC 70.85 ± 0.49 71.73 ± 0.44 69.96 ± 0.24 70.85 ± 0.39
F1-score 69.86 ± 0.41 70.25 ± 0.47 69.28 ± 0.29 69.80 ± 0.39

Tabular data only Spec. 73.98 ± 0.31 73.67 ± 0.63 72.86 ± 0.48 73.50 ± 0.47
Prec. 68.92 ± 0.29 72.16 ± 0.38 70.44 ± 0.48 70.51 ± 0.38
AUC 74.42 ± 0.39 83.17 ± 0.61 68.80 ± 0.47 75.46 ± 0.49
F1-score 71.16 ± 0.36 72.02 ± 0.39 70.82 ± 0.54 71.33 ± 0.43

Concat-1 [29] Spec. 90.76 ± 0.48 91.78 ± 0.46 76.64 ± 0.54 86.39 ± 0.49
Prec. 71.69 ± 0.42 74.52 ± 0.33 76.72 ± 0.45 74.31 ± 0.40
AUC 79.34 ± 0.52 88.14 ± 0.33 71.15 ± 0.85 79.54 ± 0.57
F1-score 67.66 ± 0.38 78.17 ± 0.66 73.78 ± 0.50 73.20 ± 0.51

Concat-2 [30] Spec. 97.74 ± 0.52 84.32 ± 0.35 89.48 ± 0.39 90.51 ± 0.42
Prec. 90.75 ± 0.56 82.47 ± 0.39 76.66 ± 0.43 83.29 ± 0.46
AUC 91.34 ± 0.36 94.29 ± 0.23 89.27 ± 0.52 91.63 ± 0.37
F1-score 76.67 ± 0.29 86.77 ± 0.46 78.58 ± 0.40 80.67 ± 0.38

DAFT [42] Spec. 97.38 ± 0.38 94.30 ± 0.31 86.17 ± 0.40 92.62 ± 0.36
Prec. 90.59 ± 0.40 92.47 ± 0.48 73.83 ± 0.46 85.63 ± 0.45
AUC 92.64 ± 0.51 94.72 ± 0.45 83.01 ± 0.23 90.12 ± 0.40
F1-score 79.18 ± 0.46 90.24 ± 0.43 82.95 ± 0.17 84.12 ± 0.35

Inter [43] Spec. 98.62 ± 0.40 86.24 ± 0.30 88.42 ± 0.40 91.09 ± 0.37
Prec. 94.54 ± 0.39 84.15 ± 0.40 75.85 ± 0.45 84.86 ± 0.41
AUC 88.72 ± 0.33 93.75 ± 0.34 89.56 ± 0.37 90.68 ± 0.35
F1-score 79.89 ± 0.54 87.37 ± 0.35 79.80 ± 0.41 82.35 ± 0.49

Ours Spec. 97.56 ± 0.57 93.38 ± 0.38 88.86 ± 0.56 93.27 ± 0.50
Prec. 91.59 ± 0.59 91.37 ± 0.55 78.74 ± 0.58 87.22 ± 0.57
AUC 94.63 ± 0.58 96.87 ± 0.62 86.95 ± 0.47 92.82 ± 0.56
F1-score 81.35 ± 0.42 91.36 ± 0.38 83.13 ± 0.58 85.44 ± 0.46
the concatenation-based fusion methods contain global complementary
information of different modalities, but the feature from each modal-
ity are extracted separately, which cause the sub-optimal solution.
Though our method also concatenates the feature maps, it employs
attention mechanism-based local fusion to learn highly discriminative
features which contains global and local information. Thus, our method
achieves the best result among all the comparison methods. Integrating
8

3D MRI features with tabular data by DAFT, as done by [42], can
improve performance compared with the Concatenation networks and
network in [43], but appears worse than our approach. DAFT only used
tabular data to fuse image global features without taking into account
the local fine-grained fusion. The network in [43] only performs better
than the Concatenation multi-modal fusion networks, which means
integrating tabular data with both low and high-level descriptors of the

image can severely deteriorate performance. Even though DAFT [42]
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Fig. 3. ROC curves for each label in the AD classification task.

and Interactive [43] introduce a new method to fuse the features, it
only learns the global complementary information.

Our proposed method is the only approach that excels at integrating
3D MRI and clinical tabular data for classification task by outper-
forming competing methods by a large margin. The main reason is
that by employing an attention mechanism-based fusion method to
guarantee representations from different modalities to gain local com-
plementary information, which the other multi-modal methods lack.
When comparing the performance of other classification (as shown in
Table 9), our proposed method achieves the best performance metrics.
Specifically, our proposed method improves more than 1% of F1-score
on ADNI datasets and 2.76% AUC compared to the previous SOTA
method (DAFT). We also plot the ROC curves in Fig. 3, from which
one can see that the curves for all categories except the MCI category
have similar area sizes (around 90.0%) under the ROC curve. For the
MCI category, its ROC curve is obviously lower than other categories,
its area under the ROC curve is less than 90.0%. Overall, these results
show that our method can achieve a promising performance for AD
classification. Finally, Tables 8 and 9 show the training and testing
time of models, which shows that our model has advantages in model
performance and real-time performance.

4.3. Validation on OASIS-1 datasets

After training and testing in ADNI datasets, we also utilized another
OASIS-1 datasets which aimed at the research on Alzheimer’s disease
to validate our proposed method. The detailed description of OASIS-
1 datasets has shown in Section 3.1. Table 10 shows the average
metric values, our proposed method has better performance than other
models with different settings, which are consistent with results of
ablation experiments in Section 4.2.1 validated in ADNI datasets. It
means the effectiveness of each part of our proposed method and
the learning both the global and local fusion information can further
improve classification performance.

Table 11 reports the detailed comparison results validated on
OASIS-1 datasets. Our proposed method achieves better performance
on most metrics. Specifically, our proposed method surpassed the AUC
result by DAFT by 0.0%, and also outperformed INTER by 0.0%. All of
those mean our proposed model is still effective on other datasets.

4.4. Statistical analysis

We adopted the Student t-test to determine whether the perfor-
mance gain achieved by the proposed MMGLF framework over the
competing methods is statistically significant. We assumed that the
Acc/Spec/Prec/AUC/F1-score values of MMGLF and each competing
method are random variables 𝑋1 and 𝑋2, respectively, each following a
Gaussian distribution, i.e., 𝑋 ∼N(𝜇 , 𝜎2), 𝑋 ∼N(𝜇 , 𝜎2). The difference
9
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Table 10
The detailed classification results (%) of ablation modules validating on OASIS-1
datasets. The best-found scores are indicated in bold.

Model Acc. Spec. Prec. AUC F1-score

I 84.27 82.07 89.87 91.05 83.85
II 84.34 82.54 90.09 92.43 84.02
III 84.29 81.33 90.70 91.63 83.33
1 83.22 80.33 88.66 90.66 80.34
2 85.43 83.32 90.89 93.79 81.99
3 83.91 81.84 89.68 91.25 82.06
Location 1 84.79 83.95 91.95 92.59 85.45
Location 2 84.26 82.33 91.26 91.93 82.94
Location 3 83.61 80.94 89.53 90.75 81.97
Ours 86.77 88.67 92.42 92.93 87.33

Table 11
The detailed classification results (%) of comparative methods validating on OASIS-1
datasets. The best-found scores are indicated in bold.

Model Acc. Spec. Prec. AUC F1-score

Image only 69.70 70.09 72.25 73.05 71.52
Tabular data only 70.36 70.27 75.63 74.46 72.26
Concat-1 [29] 71.59 71.33 76.52 74.82 59.01
Concat-2 [30] 76.70 82.33 89.57 91.29 84.00
DAFT [42] 84.61 81.00 89.07 91.79 84.33
Inter [43] 81.25 75.67 82.31 92.03 90.67
Ours 86.77 88.67 92.42 92.93 87.33

between 𝑋1 and 𝑋2 is defined as 𝛥 = 𝑋1 - 𝑋2. The hypotheses to be
tested are 𝐻0: 𝜇𝛥≤ 0 versus 𝐻1: 𝜇𝛥> 0. To enhance the rigor of this
statistical testing and control the overall false positive rate, we applied
the Bonferroni correlation to adjust the significance level. To achieve
this, we divided the original level of significance (𝛼 = 0.05) by the
total number of tests performed (m = 6 × 5), which yielded a new sig-
nificance threshold of 𝛼′ = 𝛼/m = 0.00167. Our analysis, as presented
in Table 12, indicates that for the vast majority of comparisons with
competing methods, the calculated p=values were below the adjusted
significance level of 𝛼′ = 0.00167. As a result, we were able to reject
the null hypothesis (𝐻0) and accept the alternative hypothesis (𝐻1),
indicating that the MMGLF framework performed significantly better
than the other competing methods in terms of five evaluation metrics.

Performing the same procedure on the ablation experiments, as
shown in Table 13, the vast majority of comparisons with the ablation
experiments, the calculated p-values were below the adjusted signifi-
cance level of 𝛼′ = 𝛼/m = 0.00111, where 𝛼 = 0.05, m = 9 × 5. As
a result, we were able to reject the null hypothesis (𝐻0) and accept
the alternative hypothesis (𝐻1), indicating that the MMGLF framework
performed significantly better than the ablation experiments in terms
of five evaluation metrics.

4.5. Visualization

To evaluate the regions in the 3D MRI that the model considered
essential for AD classification, we also generate heatmaps showing
the location that the network paid attention to in the classification.
It is well known that the Hippocampus and Amygdala to be strongly
affected by AD [49–51].

Firstly, to evaluate the effectiveness of global and local informa-
tion fusion of our proposed method, we visualize three cases for the
classification task, as shown in Fig. ??. From Fig. ??, with the single-
modal-based model, there are many regions outside the AD-related
regions that appear to be mistakenly considered to be important. For
other multi-modal-based model, there are fewer regions appearing to be
mistakenly considered. With our MMGLF-model, attention regions in-
side and around the AD-related regions are most relevant in classifying
AD. Besides, it can be observed that the discriminative regions within
AD subject are more distinct than that of MCI subject. Considering the
fact that structural changes caused by AD are relatively easier to be
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Table 12
The p-values of the Student t-test performance compared with competing methods on AD classification task. The significance level is set to 𝛼′ =
0.00167 after Bonferroni correlation.
Methods p-value p-value p-value p-value p-value

(Acc.) (Spec.) (Prec.) (AUC) (F1-score)

Ours vs. Image only 6.01E−14 3.58E−15 4.76E−14 2.62E−14 1.93E−13
Ours vs. Tabular data only 5.63E−13 8.14E−15 1.63E−15 3.78E−15 1.11E−13
Ours vs. Concat-1[29] 8.40E−14 1.38E−9 1.89E−12 2.23E−11 1.39E−11
Ours vs. Concat-2[30] 2.49E−8 9.96E−9 2.44E−8 1.98E−6 3.40E−18
Ours vs. DAFT [42] 7.44E−5 3.39–3 2.27E−5 5.37E−8 2.64E−4
Ours vs. Inter [43] 2.51E−7 2.21E−6 1.612.27E−7 2.58E−7 2.89E−7
Table 13
The p-values of the Student t-test performance compared with ablation experiments on
AD classification task. The significance level is set to 𝛼′ = 0.00111 after Bonferroni
orrelation.
Methods p-value p-value p-value p-value p-value

(Acc.) (Spec.) (Prec.) (AUC) (F1-score)

Ours vs.
Model I

1.75E−4 1.62E−3 6.64E−9 2.91E−4 1.01E−3

Ours vs.
Model II

9.60E−5 5.56E−5 5.71E−9 1.27E−2 4.30E−5

Ours vs.
Model III

4.66E−4 6.38E−4 2.64E−6 3.27E−5 5.11E−4

Ours vs.
Model 1

7.79E−7 2.61E−3 1.54E−6 6.07E−11 6.35E−5

Ours vs.
Model 2

7.96E−5 1.25E−7 1.25E−6 4.65E−6 3.54E−9

Ours vs.
Model 3

2.53E−7 2.29E−5 1.61E−9 4.90E−5 5.62E−4

Ours vs.
Location 1

2.76E−7 5.20E−5 5.86E−6 8.57E−1 5.69E−7

Ours vs.
Location 2

1.08E−9 6.01E−6 9.62E−11 6.34E−3 5.14E−7

Ours vs.
Location 3

4.21E−9 1.12E−5 4.07E−8 2.23E−5 1.61E−6

detected than MCI, these results suggest that the learned attention maps
of the proposed method are reasonable.

Secondly, we demonstrate several CAM-based images obtained from
both 3D MRI and clinical tabular data to show the effectiveness of
attention-based local fusion module. We compare the visualization of
our proposed model with only the global fusion module model (as
model 1 in the ablation study). The difference between our proposed
model and only with global module model is that our proposed model
used an attention mechanism-based local fusion module to realize
fusion of local region features of 3D MRI and tabular features. We
visualize situations of these two methods: (1) proposed method only
with global fusion module(both methods classified correctly), (2) pro-
posed method with both global and local fusion module(both methods
misclassified). Fig. 5 shows the specific visualization results. For these
two methods different situations, we can see that for both 3D MRI
and clinical tabular data, the important areas focused by our proposed
model with both global and local fusion module are more compact and
centered on the areas strongly related to AD. Even when both methods
misclassified the sample, our MMGLF can still focus on the partially
correct regions.

The above visualization results verify the effectiveness of the atten-
tion mechanism-based local fusion module. As can be seen from Fig. 4
and Fig. 5, our proposed multi-modal learning method focuses on the
areas strongly related to AD, which verifies that the model has been
well trained, and the global–local fusion information has been well
learned (see Fig. 4).

5. Limitations and future work

Although the proposed MMGLF model has obtained good perfor-
mance in AD classification, there are still some limitation that need to
10

be addressed in the future.
First, the feature extractor network is trained scratch in the current
work. It is interesting to pretrain existing 3D CNNs on the large-scale
3D medical image datasets and fine-tune them on the ADNI datasets
to further improve the classification performance. Second, only MRI
and tabular data are considered in our current work, while PET may
also play a role in AD prediction. It is interesting to incorporate PET to
improve the classification results. Besides, our current model is mainly
trained on one domain and transferred to other domain. As future
work, one can study how to leverage multi-source domain learning
to incorporate more diverse training sets into whole learning process
to further enhance the robustness and transferability. Furthermore,
missing modality data is common in clinical practice and it can re-
sult in the collapse of most previous methods relying on complete
modality data. Thus, it is desired to design models that can learn multi-
modal information for disease classification even if some modalities are
missing.

6. Conclusion

In this paper, we proposed a novel multi-modal global–local neural
network for Alzheimer’s disease classification. Our proposed method
can realize global–local information fusion of 3D MRI and clinical
tabular data. Specifically, to learn the global fusion information, we
adopted concatenation method to fuse global features of two modal-
ities. Furthermore, to make the local information of 3D MRI and the
clinical tabular features have a better fine-grained fusion, we designed
an attention-based fusion network to force the network to learn the
discriminate features. Then, we concatenated the extracted different
modalities’ features to obtain the final fusion features for classification.
Through these proposed modules, the network effectively extracts and
fuses features from 3D MRI and clinical tabular data. The effectiveness
of our proposed multi-modal framework is validated on ADNI datasets
and OASIS-1 datasets. Experiments on those two datasets demonstrate
that our method could significantly improve performance compared
with previous deep learning approaches that combine image and tabu-
lar data. Our framework can be extended to other multi-modal medical
data.
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Fig. 4. Visualization results on evaluating the effectiveness of our proposed multi-modal network.
Fig. 5. Visualization results on evaluating the effectiveness of the local module based on attention mechanism under two different classification situations.
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